Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Front Neurol ; 15: 1355546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497043

RESUMO

Objective: To explore the effect of cognitive reserve (CR) on brain volume and cerebrospinal fluid (CSF) in patients with mild cognitive impairment (MCI) and healthy elders (HE). Methods: 31 HE and 50 MCI patients were collected in this study to obtain structural MRI, cognitive function, and composite CR scores. Educational attainment, leisure time, and working activity ratings from two groups were used to generate cognitive reserve index questionnaire (CRIq) scores. The different volumes of brain regions and CSF were obtained using uAI research portal in both groups, which were taken as the regions of interest (ROI), the correlation analysis between ROIs and CRIq scores were conducted. Results: The scores of CRIq, CRIq-leisure time, and CRIq-education in HE group were significantly higher than patients in MCI group, and the montreal cognitive assessment (MoCA) and minimum mental state examination (MMSE) scores were positively correlated with the CRIq, CRIq-education in both groups, and were positively correlated with CRIq-leisure time in MCI group. The scores of auditory verbal learning test (AVLT) and verbal fluency test (VFT) were also positively correlated with CRIq, CRIq-leisure time, and CRIq-education in MCI group, but the score of AVLT was only positively correlated with CRIq in HE group. Moreover, in MCI group, the volume of the right middle cingulate cortex and the right parahippocampal gyrus were negatively correlated with the CRIq, and the volume of CSF, peripheral CSF, and third ventricle were positively correlated with the CRIq-leisure time score. The result of mediation analysis suggested that right parahippocampal gryus mediated the main effect of the relationship between CRIq and MoCA score in MCI group. Conclusion: People with higher CR show better levels of cognitive function, and MCI patients with higher CR showed more severe volume atrophy of the right middle cingulate cortex and the right parahippocampal gyrus, but more CSF at a given level of global cognition.

2.
Quant Imaging Med Surg ; 14(3): 2225-2239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545061

RESUMO

Background: An accurate assessment of isocitrate dehydrogenase (IDH) status in patients with glioma is crucial for treatment planning and is a key factor in predicting patient outcomes. In this study, we investigated the potential value of whole-tumor histogram metrics derived from synthetic magnetic resonance imaging (MRI) in distinguishing IDH mutation status between astrocytoma and glioblastoma. Methods: In this prospective study, 80 glioma patients were enrolled from September 2019 to June 2022. All patients underwent pre- and post-contrast synthetic MRI scan protocol. Immunohistochemistry (IHC) staining or gene sequencing were used to assess IDH mutation status in tumor tissue samples. Whole-tumor histogram metrics, including T1, T2, proton density (PD), etc., were extracted from the quantitative maps, while radiological features were assessed by synthetic contrast-weighted maps. Basic clinical features of the patients were also evaluated. Differences in clinical, radiological, and histogram metrics between IDH-mutant astrocytoma and IDH-wildtype glioblastoma were analyzed using univariate analyses. Variables with statistical significance in univariate analysis were included in multivariate logistic regression analysis to develop the combined model. Receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic performance of metrics and models. Results: The histopathologic analysis revealed that of the 80 cases, 41 were classified as IDH-mutant astrocytoma and 39 as IDH-wildtype glioblastoma. Compared to IDH-wildtype glioblastoma, IDH-mutant astrocytoma showed significantly lower T1 [10th percentile (10th), mean, and median] and post-contrast PD (10th, 90th percentile, mean, median, and maximum) values as well as higher post-contrast T1 (cT1) (10th, mean, median, and minimum) values (all P<0.05). The combined model (T1-10th + cT1-10th + age) was developed by integrating the independent influencing factors of IDH-mutant astrocytoma using the multivariate logistic regression. The diagnostic performance of this model [AUC =0.872 (0.778-0.936), sensitivity =75.61%, and specificity =89.74%] was superior to the clinicoradiological model, which was constructed using age and enhancement degree (AUC =0.822 (0.870-0.898), P=0.035). Conclusions: The combined model constructed using histogram metrics derived from synthetic MRI could be a valuable preoperative tool to distinguish IDH mutation status between astrocytoma and glioblastoma, and subsequently, could assist in the decision-making process of pretreatment.

3.
Quant Imaging Med Surg ; 14(2): 1526-1540, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415119

RESUMO

Background: Neuroimaging plays a central role in the evaluation, treatment, and prognosis of neonates. In recent years, the exploration of the developing brain has been a major focus of research for researchers and clinicians. In this study, we conducted bibliometric and visualization analyses of the related studies in the field of neonatal magnetic resonance imaging (MRI) brain neuroimaging from the past 10 years, and summarized its research status, hotspots, and frontier development trends. Methods: The Web of Science core collection database was used as the literature source from which to retrieve the relevant papers and reviews in the field of neonatal MRI brain neuroimaging published in the Science Citation Index-Expanded from 2013 to 2022. VOSviewer and CiteSpace were used to conduct bibliometric and visualization analyses of the annual publication volume, countries, institutions, journals, authors, co-cited literature, and the overall distribution of keywords. Results: We retrieved 3,568 papers and reviews published from 2013 to 2022. The number of publications increased during this period. The United States (US) and the United Kingdom were the largest contributors, with the US receiving the highest H-index and number of citations. The institutions that published the most were the University of London and Harvard University. The research mainly focused on cerebral cortex, brain tissue, brain structure network, artificial intelligence algorithm, automatic image segmentation, and premature infants. Conclusions: This study reveals the research status and hotspots of magnetic resonance imaging in the field of neonatal brain neuroimaging in the past decade, which helps researchers to better understand the research status, hotspots, and frontier development trends.

5.
Adv Healthc Mater ; 13(5): e2302495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056018

RESUMO

Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.


Assuntos
DNA Catalítico , Nanopartículas , Fotoquimioterapia , Porfirinas , Genes Mitocondriais , Oxigênio Singlete , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral
6.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917162

RESUMO

Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis.

7.
Adv Sci (Weinh) ; 10(32): e2302377, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37824205

RESUMO

More than half of non-muscle-invasive bladder cancer (NMIBC) patients eventually relapse even if treated with surgery and BCG without optional bladder-preserving therapy. This study aims to investigate the antitumor activity and safety of a HER2-targeted antibody-drug conjugate, RC48-ADC, intravesical instillation for NMIBC treatment. In this preclinical study, it is revealed that human epidermal growth factor receptor 2 (HER2) expression scores of 1+, 2+, and 3+ are recorded for 16.7%, 56.2%, and 14.6% of NMIBC cases. The antitumor effect of RC48-ADC is positively correlated with HER2 expression in bladder cancer (BCa) cell lines and organoid models. Furthermore, RC48-ADC is revealed to exert its antitumor effect by inducing G2/M arrest and caspase-dependent apoptosis. In an orthotopic BCa model, tumor growth is significantly inhibited by intravesical instillation of RC48-ADC versus disitamab, monomethyl auristatin E, epirubicin, or phosphate-buffered saline control. The potential toxicity of intravesical RC48-ADC is also assessed by dose escalation in normal nude mice and revealed that administration of RC48-ADC by intravesical instillation is safe within the range of effective therapeutic doses. Taken together, RC48-ADC demonstrates promising antitumor effects and safety with intravesical administration in multiple preclinical models. These findings provide a rational for clinical trials of intravesical RC48-ADC in NMIBC patients.


Assuntos
Imunoconjugados , Neoplasias da Bexiga Urinária , Animais , Camundongos , Humanos , Administração Intravesical , Imunoconjugados/uso terapêutico , Apoptose , Camundongos Nus , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
8.
Hum Brain Mapp ; 44(16): 5357-5371, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530546

RESUMO

A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.


Assuntos
Ácido Glutâmico , Doenças Inflamatórias Intestinais , Humanos , Depressão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glutamina , Encéfalo/diagnóstico por imagem , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Neurotransmissores , Ácido gama-Aminobutírico
9.
ACS Appl Mater Interfaces ; 15(28): 33550-33559, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418216

RESUMO

To achieve future commercialization of perovskite solar cells (PSCs), balancing the efficiency, stability, and manufacturing cost is required. In this study, we develop an air processing strategy for efficient and stable PSCs based on 2D/3D heterostructures. The organic halide salt phenethylammonium iodide is adopted to in situ construct a 2D/3D perovskite heterostructure, in which 2,2,2-trifluoroethanol as a precursor solvent is introduced to recrystallize 3D perovskite and form an intermixed 2D/3D perovskite phase. This strategy simultaneously passivates defects, reduces nonradiative recombination, prevents carrier quenching, and improves carrier transport. As a result, a champion power conversion efficiency of 20.86% is obtained for air-processed PSCs based on 2D/3D heterostructures. Moreover, the optimized devices exhibit superior stability, remaining more than 91 and 88% of their initial efficiencies after 1800 h of storage under dark condition and 24 h of continuous heating at 100 °C, respectively. Our study provides a convenient method to fabricate all-air-processed PSCs with high efficiency and stability.

10.
Adv Mater ; 35(51): e2304414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515580

RESUMO

Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.

11.
Cell Death Dis ; 14(7): 408, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422473

RESUMO

Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.


Assuntos
Ribonucleoproteínas , Enzimas de Conjugação de Ubiquitina , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Metástase Linfática , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Neoplasias da Bexiga Urinária/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
12.
Eur Radiol ; 33(12): 8464-8476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37378712

RESUMO

OBJECTIVE: Myocardial extracellular volume (ECV) fraction is an important imaging biomarker in clinical decision-making. CT-ECV is a potential alternative to MRI for ECV quantification. We conducted a meta-analysis to comprehensively assess the reliability of CT for ECV quantification with MRI as a reference. METHODS: We systematically searched PubMed, EMBASE, and the Cochrane Library for relevant articles published since the establishment of the database in July 2022. The articles comparing CT-ECV with MRI as a reference were included. Meta-analytic methods were applied to determine the pooled weighted bias, limits of agreement (LOA), and correlation coefficient (r) between CT-ECV and MRI-ECV. RESULTS: Seventeen studies with a total of 459 patients and 2231 myocardial segments were included. The pooled mean difference (MD), LOA, and r for ECV quantification at the per-patient level was (0.07%; 95% LOA: - 0.42 to 0.55%) and 0.89 (95% CI: 0.86-0.91), respectively, while on the per-segment level was (0.44%; 95% LOA: 0.16-0.72%) and 0.84 (95% CI: 0.82-0.85), respectively. The pooled r from studies with the ECViodine method for ECV quantification was significantly higher compared to those with the ECVsub method (0.94 (95% CI: 0.91-0.96) vs. 0.84 (95% CI: 0.80-0.88), respectively, p = 0.03). The pooled r from septal segments was significantly higher than those from non-septal segments (0.88 (95% CI: 0.86-0.90) vs. 0.76 (95% CI: 0.71-0.90), respectively, p = 0.009). CONCLUSION: CT showed a good agreement and excellent correlation with MRI for ECV quantification and is a potentially attractive alternative to MRI. CLINICAL RELEVANCE STATEMENT: The myocardial extracellular volume fraction can be acquired using a CT scan, which is not only a viable alternative to myocardial extracellular volume fraction derived from MRI but is also less time-consuming and costly for patients. KEY POINTS: • Noninvasive CT-ECV is a viable alternative to MRI-ECV for ECV quantification. • CT-ECV using the ECViodine method showed more accurate myocardial ECV quantification than ECVsub. • Septal myocardial segments showed lower measurement variability than non-septal segments for the ECV quantification.


Assuntos
Iodo , Miocárdio , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Valor Preditivo dos Testes
13.
ChemSusChem ; 16(16): e202300257, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293844

RESUMO

Environmental instability and photovoltage loss induced by defects are inevitable obstacles in the development of all-air-processed perovskite solar cells (PSCs). In this study, the ionic liquid 1-ethyl-3-methylimidazolium iodide ([EMIM]I) is introduced into the hole transport layer/three-dimensional (3D) perovskite interface to form a self-assembled 1D/3D perovskite heterostructure, which significantly reduces iodine vacancy defects and modulates band energy alignment, resulting in pronouncedly improved open-circuit voltage (Voc ). As a result, the corresponding device exhibits a high power conversion efficiency with negligible hysteresis and a high Voc of 1.14 V. Most importantly, together with the high stability of the 1D perovskite, remarkable high environmental and thermal stabilities of the 1D/3D PSC devices are achieved, which maintain 89 % of unencapsulated device initial efficiency after 1320 h in air and retain 85 % of the initial efficiency when heated at 85 °C for 22 h. This study affords an effective strategy to fabricate high-performance all-air-processed PSCs with outstanding stability.

14.
Opt Express ; 31(10): 16623-16633, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157738

RESUMO

This paper reports the design, fabrication, and experimental demonstration of a monolithic silicon photonic (SiPh) 32×32 Thin-CLOS arrayed waveguide grating router (AWGR) for scalable SiPh all-to-all interconnection fabrics. The 32×32 Thin-CLOS makes use of four 16-port silicon nitride AWGRs, which are compactly integrated and interconnected by a multi-layer waveguide routing method. The fabricated Thin-CLOS has 4 dB insertion loss, < -15 dB adjacent channel crosstalk, and < -20 dB non-adjacent channel crosstalk. System experiments operated on the 32×32 SiPh Thin-CLOS demonstrate error-free communication at 25 Gb/s.

15.
Eur J Neurol ; 30(11): 3529-3539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36905309

RESUMO

BACKGROUND AND PURPOSE: Growing evidence suggests that abnormalities in brain-gut-microbiome (BGM) interactions are involved in the pathogenesis of irritable bowel syndrome (IBS). Our study aimed to explore alterations in dynamic functional connectivity (DFC), the gut microbiome and the bidirectional interaction in the BGM. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI), fecal samples and clinical chacteristics were collected from 33 IBS patients and 32 healthy controls. We performed a systematic DFC analysis on rs-fMRI. The gut microbiome was analyzed by 16S rRNA gene sequencing. Associations between DFC characteristics and microbial alterations were explored. RESULTS: In the DFC analysis, four dynamic functional states were identified. IBS patients exhibited increased mean dwell and fraction time in State 4, and reduced transitions from State 3 to State 1. Aberrant temporal properties in State 4 were only evident when choosing a short window (36 s or 44 s). Decreased functional connectivity (FC) variability was found in State 1 and State 3 in IBS patients, two of which (independent component [IC]51-IC91, IC46-IC11) showed significant correlations with clinical characteristics. Additionally, we identified nine significantly differential abundances in microbial composition. We also found that IBS-related microbiota were associated with aberrant FC variability, although these exploratory results were obtained at an uncorrected threshold of significance. CONCLUSIONS: Although future studies are needed to confirm our results, the findings not only provide a new insight into the dysconnectivity hypothesis in IBS from a dynamic perspective, but also establish a possible link between DFC and the gut microbiome, which lays the foundation for future research on disrupted BGM interactions.

16.
Front Behav Neurosci ; 17: 1123534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969802

RESUMO

Objective: It is indisputable that the functional connectivity of the brain network in juvenile myoclonic epilepsy (JME) patients is abnormal. As a mathematical extension of the traditional network model, the multilayer network can fully capture the fluctuations of brain imaging data with time, and capture subtle abnormal dynamic changes. This study assumed that the dynamic structure of JME patients is abnormal and used the multilayer network framework to analyze the change brain community structure in JME patients from the perspective of dynamic analysis. Methods: First, functional magnetic resonance imaging (fMRI) data were obtained from 35 JME patients and 34 healthy control subjects. In addition, the communities of the two groups were explored with the help of a multilayer network model and a multilayer community detection algorithm. Finally, differences were described by metrics that are specific to the multilayer network. Results: Compared with healthy controls, JME patients had a significantly lower modularity degree of the brain network. Furthermore, from the level of the functional network, the integration of the default mode network (DMN) and visual network (VN) in JME patients showed a significantly higher trend, and the flexibility of the attention network (AN) also increased significantly. At the node level, the integration of seven nodes of the DMN was significantly increased, the integration of five nodes of the VN was significantly increased, and the flexibility of three nodes of the AN was significantly increased. Moreover, through division of the core-peripheral system, we found that the left insula and left cuneus were core regions specific to the JME group, while most of the peripheral systems specific to the JME group were distributed in the prefrontal cortex and hippocampus. Finally, we found that the flexibility of the opercular part of the inferior frontal gyrus was significantly correlated with the severity of JME symptoms. Conclusion: Our findings indicate that the dynamic community structure of JME patients is indeed abnormal. These results provide a new perspective for the study of dynamic changes in communities in JME patients.

17.
ACS Appl Mater Interfaces ; 15(8): 10774-10784, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799479

RESUMO

High-Ni Li-rich layered oxides (HNLOs) derived from Li-rich Mn-based layered oxides (LRMLOs) can effectively mitigate the voltage decay of LRMLOs but normally suffered from decreased capacity and cycling stability. Herein, an effective, simple, and up-scalable co-doping strategy of trace Fe and F ions via a facile expanded graphite template-sacrificed approach was proposed for improving the performance of HNLOs. The trace Fe and F co-doping can far more effectively improve both its rate capability and cycling stability in a synergistic manner compared to the introduction of individual Fe cations and F anions. The co-doping of Fe and F increased the Li-O bonds by a magnitude far larger than the summation of the increments by their individual doping, quite favorable for the performance. The trace Fe doping can escalate the capacity and enhance the rate capability significantly by increasing the components of lower valence transition metals to activate their redox reactions more effectively and improving both the electronic and ionic conduction. In contrast, trace F can improve the cycling stability remarkably by lowering the O 2p band top to suppress the lattice oxygen escape effectively which were revealed by density functional theory calculations. The co-doped cathode exhibited excellent cycling stability with a superior capacity retention of 90% after 200 cycles at 1 C, much higher than 64% for the pristine sample. This study offers an idea for synergistically improving the performance of Li-rich layered oxides by co-doping trace Fe cations and F anions simultaneously, which play a complementary role in performance improvement.

18.
Adv Sci (Weinh) ; 10(11): e2206154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717275

RESUMO

Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.


Assuntos
Antibacterianos , Osteomielite , Humanos , Antibacterianos/uso terapêutico , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Osteomielite/cirurgia
19.
Exp Cell Res ; 423(1): 113453, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584745

RESUMO

BACKGROUND: CYRI-B plays key roles in regulating cell motility in nontumor cells. However, the role and function of CYRI-B have rarely been studied in cancer cells, including gastric cancer. The purpose of this study was to investigate the clinical significance, biological function and underlying molecular mechanism of CYRI-B in gastric cancer. METHOD: CYRI-B protein levels were detected by immunohistochemistry (IHC) and western blotting (WB). Gastric cancer cells and organoid models were evaluated to explore the correlation of CYRI-B with collagen type I. The function of CYRI-B in proliferation, migration, invasion in gastric cancer was evaluated by in vitro and in vivo experiments. RESULT: CYRI-B protein levels were downregulated in gastric cancer. Low expression of CYRI-B was related to later tumor stage and poorer prognosis. CYRI-B expression was reduced when cells were cultured in collagen type I, which was mediated by collagen receptor DDR1. Knockdown of CYRI-B promoted migration, invasion and EMT in vivo and in vitro. Mechanistically, knockdown of CYRI-B activated the Rac1-STAT3 pathway. CONCLUSION: Our findings showed that CYRI-B plays an important role in the tumor microenvironment, and is associated with malignant characteristics acquired by gastric cancer. This study may provide new targets for future therapeutic interventions for tumor metastasis.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colágeno Tipo I/metabolismo , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Invasividade Neoplásica/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteínas Mitocondriais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572651

RESUMO

Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-ß signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Aprendizado de Máquina , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...